Submited in Partial Fulfillment of the Requirement for the Award of Bachelor of Engineering
Submited in Partial Fulfillment of the Requirement for the Award of Bachelor of Engineering
Chapter One of Submited in Partial Fulfillment of the Requirement for the Award of Bachelor of Engineering
INTRODUCTION
BACKGROUND OF THE STUDY
The dashboard instrument cluster in a car organizes a variety of sensors and gauges, including the oil pressure gauge, coolant temperature gauge, fuel level gauge, tachometer and more. But the most prominent gauge and perhaps the most important, at least in terms of how many times you look at it while driving is the speedometer. The job of the speedometer is to indicate the speed of a car in miles per hour, kilometers per hour or both. Even in late-model cars, it’s an analog device that uses a needle to point to a specific speed, which the driver reads as a number printed on a dial. As with any emerging technology, the first speedometers were expensive and available only as options. It wasn’t until 1910 that automobile manufacturers began to include the speedometer as standard equipment. One of the first speedometer suppliers was Otto Schulze Auto meter (OSA), a legacy company of Siemens VDO Automotive AG, one of the leading developers of modern instrument clusters. The first OSA speedometer was built in 1923 and its basic design didn’t change significantly for 60 years. In this project report, high lights will be on the history of speedometers, how they work and digitalization of speedometer, add-on speed checker, and what the future may hold for speedometer design, below is a pictorial overview of a speedometer.
A modern speedometer.
THE AIM AND OBJECTIVE OF THE PROJECT
To design a digital speedometer.
Incorporate a speed monitor with respect to set threshold.
SCOPE OF THE PROJECT
Actualization of speed using analog to digital conversion technique;
Displaying the analog value in a digital format using an alphanumeric LCD display;
Entering the speed limit using keyboard built around to push to make switches (mode and adjustment keys)
Implementing hall -effect technique.
PROJECT REPORT ORGANIZATION
The chapter one is the introductory chapter of the project, chapter two highlights on the literature review of the project, chapter three highlights on the system operation chapter four circuit design and implementation, chapter five testing and results of the project, chapter six summary, recommendation and conclusion of the project non-chapter pages are: the reference page and appendix.